## MA 323A Combinatorial Geometry!## Notes on Buckyballs -- Part 2pentagons pointing-in, or PPI family,
where the "tiles" that correspond to the faces of the icosahedron are
made by triangulating each face of the icosahedron and taking the dual.
But we noticed that the classic spherical Buckyball known as the soccer
ball (or truncated icosahedron) does NOT fit into this family!
Thus there are other Buckyballs out there. What are they? How can
we find them?
First let's look at what the dual of the soccer ball really looks like: pentagons pointing-out (PPO) family. Indeed, arranging
more hexagons in between the pentagons gives you bigger tiles, and thus bigger
PPO spherical Buckyballs.
Exercise: In the PPI family, let n=1 be the dodecahedron (which has 30
edges, thus needing 30 units to make) and n=2 be the next one in this family
(which we saw in Part 1, having 120 edges). Find a formula in terms of
n for the number of edges in the nth member of the PPI family.
Then let n=1 be the soccer ball in the PPO family, and n=2 be the next biggest one, whose tile is shown about. (360 edges.) Find a formula in terms of n for the number of edges in the nth member of the PPO family. But is this it?? Do all spherical Buckyballs fit into either the PPI family or the PPO family? The answer is NO! Having the pentagons "pointing in" and "pointing out" are only two possibilities. We can actually rotate each pentagon a little bit and create other families of spherical Buckyballs! But is there any way to classify these? You betcha! More to come... Return to Combinatorial Geometry Page |